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• Introduction to dynamical systems

• LTI systems

• Time domain response and Lagrange formula

• Laplace transform and transfer function

• Equilibria and stability

• Example: state feedback

• Harmonic response function 

• Discrete-time systems (hints)

Overview
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• We want to assign a desired behaviour to the 
system S

• the output y(t) should be close to some reference 
signal r(t)

• To do so, we look for a suitable input u(t)

Introduction

S
u y
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• Two possible strategies

1. Open-loop: find u that allows to reach the 
desired y a priori (usually based on an inverse
model of the system)
(feedforward control)

Introduction

S
u y

C
r
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• Two possible strategies

2. Closed-loop: calculate u online based on a 
measurement of the output y 
(feedback control)

Introduction

C r

S
u y
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Example: 

𝑐 ሶ𝑇 = −𝑘 𝑇 − 𝑇𝑒 + 𝑃𝑖𝑛

• 𝑇 oven temperature [°C]

• 𝑇𝑒 external temperature [°C]

• 𝑐 thermal capacity [J/°C]

• 𝑘 thermal conductivity [W/°C]

• 𝑃𝑖𝑛 input power [W]

Open-loop control
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Example: 𝑐 ሶ𝑇 = −𝑘 𝑇 − 𝑇𝑒 + 𝑃𝑖𝑛

• Desired steady-state temperature of 150°, assuming 

𝑇𝑒 = 20
k = 10
𝑐 = 1000

→ feedforward strategy:

𝑃𝑖𝑛 = 𝑘(150° − 𝑇𝑒) = 1300 W

Open-loop control
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>> T_e = 20;

>> c = 1000;

>> k = 10;

>> ode45(@(t,T)-k/c*(T-T_e)+P_in/c,[0 2000],T_e)

Open-loop control
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• What could go wrong?

– uncertainty on model coefficients
– uncertainty on environment temperature
– not all power levels may be available 
→ relay/bang-bang control

– may be slow… 
→ improve dynamical performance

• Moreover, feedforward is not viable for 
unstable systems!

Open loop control
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Why design a feedback controller?

1. Uncertainties:
the model may not be accurate

2. External disturbances:
unforeseen and uncontrollable inputs may 
act on the system

3. Efficiency:
optimize the time/amount of energy needed

4. Flexibility:
we may not know the reference in advance

Why feedback control?
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• But above all:

–open-loop control changes the output of 
the system

–closed-loop control changes system 
dynamics: 
→ we can stabilize an unstable system!

Why feedback control?
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• The reference is usually compared with the 
measured output to generate a control error 
signal

Closed-loop control

S
u(t) y(t)

C

+

-
r(t)e(t)

control error
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Classic closed-loop control scheme

• r(t): reference
• e(t): control error
• u(t): control action
• y(t): controlled output

Closed-loop control

S
u(t) y(t)

C+

-

r(t) e(t)
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• Dynamical system : mathematical model that 
represents how a given process (system) with a 
certain number of degrees of freedom evolves over 
time

• Behavior typically depends on previous history, 
which is compactly captured by a set of state 
variables
(e.g. position and speed of a material point)

• Typically, evolution is described by a set of 
differential equations

Dynamical systems
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• General equations of a dynamical system

ሶ𝒙(𝑡) = 𝒇 𝒙 𝑡 , 𝒖 𝑡 ; 𝑡 ,  𝑥 𝑡0 = 𝑥0

𝒚(𝑡) = 𝒈(𝒙 𝑡 , 𝒖 𝑡 ; 𝑡)

• This representation is called 
Input-State-Output (or ISO)

• In general, a system can be non-linear, time-
varying, MIMO, complex, multi-agent…

Dynamical systems

inputs (controllable or not)stateoutputs



0 – Introduction to the course Advanced Automation and Control - a.a. 2022/2023Control and Operation of Tokamaks 2025

• Special case: Linear Time-Invariant (SISO) 
systems

ሶ𝒙(𝑡) = 𝐴𝒙(𝑡) + 𝐵𝑢 𝑡 ,  𝑥 𝑡0 = 𝑥0

𝑦(𝑡) = 𝐶𝒙 𝑡 + 𝐷𝑢 𝑡

• linear systems → superposition principle!

LTI dynamical systems
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• We take advantage of the superposition 
principle to decompose the system as (#1)

ሶ𝒙 = 𝐴𝒙,  𝒙 𝑡0 = 𝒙𝟎

𝒖 = 𝟎

NOTE: a system whose state does not depend on external inputs 
is said to be autonomous (but the same terminology is also used  
for nonlinear systems that do not depend explicitly on time)

Free evolution
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ሶ𝒙 = 𝐴𝒙

• This system evolves according to

𝒙 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝒙𝟎

→ free evolution/natural response (𝑢 = 0,  𝑥(𝑡0) ≠ 0)

NOTE: the dependency on 𝑡 − 𝑡0 and not on 𝑡 and 𝑡0 
separately comes from the time-invariance hypothesis

Free evolution

Matrix exponential
𝑑

𝑑𝑡
𝑒𝐴𝑡 = 𝐴𝑒𝐴𝑡



0 – Introduction to the course Advanced Automation and Control - a.a. 2022/2023Control and Operation of Tokamaks 2025

• We take advantage of the superposition 
principle to decompose the system as (#2)

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢,  𝑥 𝑡0 = 0

𝑥 𝑡 = න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑 𝜏

→ forced response (𝑢 ≠ 0,  𝑥 𝑡0 = 0)

Forced response
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• Adding up the two contributions

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢,  𝑥 𝑡0 = 𝑥0

𝑦 = 𝐶𝑥 + 𝐷𝑢

𝑥 𝑡 = 𝑒𝐴 𝑡−𝑡0 𝑥0 + න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑 𝜏

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

Lagrange’s formula

Lagrange formula

Convolution integral
also written as 

𝒆𝑨𝒕 ⋆ 𝒖 𝒕
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• Assume for simplicity D = 0* (strictly proper system) 
*If not, the system could be separated into a dynamical and a purely 
algebraic part (D)

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢,  𝑥 𝑡0 = 𝑥0

𝑦 = 𝐶𝑥 + 𝐷𝑢

𝑦 𝑡 = 𝐶𝑒𝐴 𝑡−𝑡0 𝑥0 + 𝐶 න
𝑡0

𝑡

𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑 𝜏

NOTE: from here on we will assume (wlog) 𝑡0 = 0

Lagrange formula
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• We defined the matrix exponential function through 
the property

𝑑

𝑑𝑡
𝑒𝐴𝑡 = 𝐴𝑒𝐴𝑡

• But we can also express it through its Taylor series

𝑒𝐴𝑡 = 𝐼 + ෍

𝑘

𝐴𝑘

𝑘!
𝑡𝑘

Natural modes
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diagonalizable

• In the case of a diagonal matrix

Λ =
𝜆1 0 0
0 ⋱ 0
0 0 𝜆𝑛

 ⇒  𝑒Λ = 𝐼 + ෍

𝑘

Λ𝑘

𝑘!
=

𝑒𝜆1 0 0
0 ⋱ 0
0 0 𝑒𝜆𝑛

• More in general, if the dynamical matrix is diagonalizable*:

Λ = 𝑇−1𝐴𝑇
ሶ𝒙 = 𝑇Λ𝑇−1𝒙

𝑇−1 ሶ𝒙 = Λ 𝑇−1𝒙

* For simplicity we only consider the case of eigenvalues with multiplicity one

Natural modes

https://www.youmath.it/lezioni/algebra-lineare/matrici-e-vettori/1581-matrice-diagonalizzabile.html
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Defining
𝝃 = 𝑇−1𝒙

we get

𝝃 𝑡 = 𝑒Λ𝑡𝝃𝟎 =

 =  𝜉0,1𝑒𝜆1𝑡 + 𝜉0,2𝑒𝜆2𝑡 + ⋯ + 𝜉0,𝑛𝑒𝜆𝑛𝑡

 
𝒙 𝑡 = 𝑇𝝃(𝑡) = 𝑇𝑒Λ𝑡𝑇−1𝒙𝟎

The evolution of the system is associated with exponential
modes related to the eigenvalues of the A matrix

Natural modes

= 𝑒𝐴𝑡
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here

These modes can be:

• Aperiodic  → real eigenvalues
      𝑐𝑖𝑒𝜆𝑖𝑡

• Pseudoperiodic → complex eigenvalues
      𝑐𝑖𝑒𝛼𝑖𝑡𝑒𝑖𝜔𝑖𝑡

NOTE: in the case of complex eigenvalues, a pseudoperiodic mode 
will correspond to a pair of conjugated eigenvalues. More details 
here

Natural modes

http://www.diag.uniroma1.it/~lanari/FdA9/FdA9MatDid/AutovaloriCC.pdf
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Aperiodic modes

– Convergent

– Constant

– Divergent 

Natural modes
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Pseudo-periodic modes

– Convergent

– Constant

– Divergent 

Natural modes
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• 𝐴 is said to be a Hurwitz (or stable) matrix if 
all of its eigenvalues have negative real part

• Dynamical systems with a Hurwitz A 
matrix are stable

Hurwitz theorem



0 – Introduction to the course Advanced Automation and Control - a.a. 2022/2023Control and Operation of Tokamaks 2025

Laplace Transform

• We can apply the Laplace Transform to the 
equations of our system

𝐿 𝑓 𝑡 = 𝐹 𝑠 ≔ න
0

∞

𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡

• We consider the monolateral transform: we 
want to preserve causality

• Mono and bi-lateral transforms coincide if 
𝑓 𝑡 = 𝑓 𝑡 ⋅ 𝟙(t)

Laplace Transform

https://it.wikipedia.org/wiki/Trasformata_di_Laplace
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Laplace transform has the following properties

• Linearity

• Translation in the Laplace domain
𝐿 𝑒𝛼t𝑓 𝑡 = 𝐹 𝑠 − 𝛼

• Translation in time
𝐿 𝑓 𝑡 − 𝑇 = 𝐹 𝑠 𝑒−𝑠𝑇

Laplace Transform



0 – Introduction to the course Advanced Automation and Control - a.a. 2022/2023Control and Operation of Tokamaks 2025

Laplace transform has the following properties

• Derivative in time

𝐿
𝑑𝑓

𝑑𝑡
= 𝑠𝐹 𝑠 − 𝑓 0

• Integral in time

𝐿 න
0

𝑡

𝑓 𝜏 𝑑𝜏 =
1

𝑠
𝐹 𝑠

Laplace Transform
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Laplace transform has the following 
properties

• Convolution
𝐿 𝑓 ∗ 𝑔 = 𝐹 𝑠 𝐺 𝑠

→ thanks to this property, we can turn the 
convolution integral seen before into a 

product of Laplace transforms (see later)

Laplace Transform
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The following theorems also apply

• Initial value
𝑓 0 = lim

𝑠→∞
𝑠𝐹(𝑠)

• Final value
lim
𝑡→∞

𝑓 𝑡 = lim
𝑠→0

𝑠𝐹(𝑠)

Laplace Transform
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• Dirac’s delta fcn
𝐿 𝛿 𝑡 = 1

• Step fcn
𝐿 𝟙 𝑡 = 1/𝑠

• Ramp
𝐿 𝑅 𝑡 = 1/𝑠2

List of transforms

• Exponential

𝐿 𝑒𝛼𝑡 =
1

𝑠 − 𝛼

• Sine

𝐿 sin(𝜔𝑡) =
𝜔

𝑠2 + 𝜔2

• Cosine

𝐿 cos(𝜔𝑡) =
𝑠

𝑠2 + 𝜔2
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Laplace Transform

• We can apply the Laplace Transform to the 
equations of our system

𝑠𝑋 𝑠 − 𝑥0 = 𝐴𝑋 𝑠 + 𝐵𝑈 𝑠
𝑌 𝑠 = 𝐶𝑋 𝑠 + 𝐷𝑈(𝑠)

𝑌 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝑥0 + 𝐶 𝑠𝐼 − 𝐴 −1𝐵 + 𝐷 𝑈(𝑠)

Transfer function

transfer function

https://it.wikipedia.org/wiki/Trasformata_di_Laplace
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The expression

H s ≔
𝑌 𝑠

𝑈 𝑠
= 𝐶 𝑠𝐼 − 𝐴 −1𝐵

is also called transfer function of the system

→ The tf is an Input-Output (IO) representation 
of the system

Transfer function
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In particular, since 𝐿 𝛿 𝑡 = 1

 

u t = 𝛿 𝑡 ⇒ Y s = 𝐻 𝑠 𝑈 𝑠 = 𝐻(𝑠)

→ The transfer function of a linear system is the 
Laplace transform of the impulse response

Transfer function
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Real differential equation → Complex algebraic equation

Transfer function
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For LTI systems, the tf will be a ratio of 
polynomials

𝐻 𝑠 =
𝑛𝑢𝑚 𝑠

𝑑𝑒𝑛 𝑠
=

𝑎𝑚𝑠𝑚 + 𝑎𝑚−1𝑠𝑚−1 + ⋯ + 𝑎1𝑠 + 𝑎0

𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 + ⋯ + 𝑏1𝑠 + 𝑏0

• The roots of num(s) are called zeros
• The roots of den(s) are called poles
• 𝑑𝑒𝑛 𝑠 = det(𝑠𝐼 − 𝐴) → characteristic polynomial of 𝐴!

The poles coincide with the eigenvalues of the system

Transfer function
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natural evolution modes

The tf can be broken down to terms of the form

•
1

𝑠−𝜆
 

𝐿−1

 𝑒𝜆𝑡 ∙ 𝟙 t

•
𝜔

𝑠−𝛼 2+𝜔2  
𝐿−1

 𝑒𝛼𝑡sin(𝜔𝑡) ∙ 𝟙 t

•
𝑠

𝑠−𝛼 2+𝜔2  
𝐿−1

 𝑒𝛼𝑡cos(𝜔𝑡) ∙ 𝟙 t

→ Again the natural evolution modes seen before!

Transfer function
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• Equilibrium points are defined by the equation

ሶ𝑥 = 𝑓 𝑥, 𝑢 = 0

Equilibria and stability
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• Without external forcing, a system that is at 
an equilibrium point will stay there

• However, equilibria can be stable or unstable

Equilibria and stability
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• For linear systems, the only equilibrium 
point is 

𝑨𝒙 = 𝟎

• This equilibrium is stable if 𝐴 is Hurwitz

Equilibria and stability
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The system is unstable if the matrix 𝐴

1. has eigenvalues in the right-half Gauss plane

2. has eigenvalues with 0 real-part and multiplicity > 1 

(if eigenvalues with 0 real part are present with multiplicity one, the 
system is said to be marginally stable)

Equilibria and stability
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• A simple example of feedback control is as 
follows (state feedback)

ሶ𝒙 = 𝐴𝒙(𝑡) + 𝐵𝑢 𝑡 ,  𝑥 𝑡0 = 𝑥0

𝑦 = 𝒙 𝑡
𝒖 = −𝑲𝒙

Example: state feedback

𝑊(𝑠)
u y=x

-K
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• Substituting the expression of u(t):

ሶ𝒙 = 𝐴 − 𝐵𝐾 𝒙 𝑡

• With this choice, the original system is recast into an 
autonomous system with dynamical matrix 𝑨 − 𝑩𝑲

• The system will evolve with the modes associated to 
𝐴 − 𝐵𝐾: if these can be chosen arbitrarily (i.e. the state 
is measurable and the system is controllable…), we are 
free to assign a desired dynamic behaviour to the 
system!

Example: state feedback
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• Frequency domain analysis is a tool widely used in 
the analysis and control of dynamical systems

• The harmonic response function can be obtained 
by applying the Fourier transform to the system

• For stable* LTI systems this is equivalent to 
evaluate the tf along the imaginary axis 𝑠 = 𝑖𝜔

* Stable systems have convergence abscissa < 0

Frequency response
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• A LTI system under a sinusoidal input will 
produce a sinusoidal output

• Module and phase of the output sinusoid are 
related to the harmonic response function 

Frequency response

|𝑊 𝑖𝜔 |sin(𝜔𝑡 + ∡𝑊(𝑖𝜔))sin 𝜔𝑡

𝑊(𝑖𝜔)
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• It can be shown that feeding a sinusoid 
𝑢 𝑡 = sin 𝜔0𝑡  to a LTI system, it reaches
sinusoidal regime, where:

• the output is shifted by ∡𝑷 𝝎𝟎

• it is scaled by 𝑷 𝝎𝟎

• NOTE: 𝑃 𝑖𝜔 = −𝑃∗(𝑖𝜔) → phase is odd, module is even
(…of course - can you see why?)

Frequency response
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• example: 
ሶ𝑥 = −𝑥 + 5𝑢, 𝑦 = 𝑥

𝑢 = sin(2𝜋 ⋅ 3𝑡)

Frequency response

=0.2649
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• Some graphical representations are widely 
used in control engineering

• They focus on different aspects of the 
harmonic response

Graphical representation
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• Magnitude and 
phase of 𝐺 𝑖𝜔  
separately

• wide frequency 
ranges 
→ usually x axis 
in logarithmic 
scale

• Example: 

𝑃 𝑖𝜔 =
1

𝑠(𝑠 + 1)

Bode diagram
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• Bode diagrams (magnitude in particular) 
are quite common also in other fields

Bode diagram
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• Real and 
imaginary parts 
of 𝐺(𝑖𝜔) on the 
same graph

• Very useful to 
study stability

• Example: 

𝐺 𝑖𝜔 =
1

𝑠 + 1 3

Nyquist diagram
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• In many cases, it may be necessary to 
discretize the dynamics of the system 

• Typical example: digital control systems

ሶ𝑥 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  →  𝑥 𝑘 + 1 = ሚ𝐴𝑥 𝑘 + ෨𝐵𝑢 𝑘

Discrete-time systems
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• In this case the Z-transform can be used

𝐹 𝑠 = න
0

+∞

𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡

• represent sampled signal as

𝑡 = 𝑘𝑇𝑠 ⇒ 𝑓 𝑘𝑇𝑠 ≈ ෍

0

∞

𝑓 𝑡 𝛿 𝑡 − 𝑘𝑇𝑠

Z-transform
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• apply Laplace transform

𝐹 𝑠 = න
0

+∞

𝑒−𝑠𝑡 ෍

0

∞

𝑓 𝑡 𝛿 𝑡 − 𝑘𝑇𝑠 𝑑𝑡

 = ෍

0

∞

𝑓 𝑘𝑇𝑠 𝑒−𝑠𝑘𝑇𝑠

• so it is natural to define

𝑧 = 𝑒𝑠𝑇𝑠 ⇒ 𝐹 𝑧 = ෍

0

∞

𝑓 𝑘𝑇𝑠 𝑧−𝑘

Z-transform
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The Z-transform inherits many properties

• Linearity

• Translation in time
𝑍 𝑓 𝑘 − 1 = 𝐹 𝑧 𝑧−1

– sometimes written as 

𝑓 𝑘 − 1 = 𝑧−1𝑓(𝑘)

• Final value
lim
𝑡→∞

𝑓 𝑡 = lim
𝑧→1

(𝑧 − 1)𝐹(𝑧)

Z-transform
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• Similar to the Laplace transform

𝑧𝑋 𝑧 − 𝑥0 = 𝐴𝑋 𝑧 + 𝐵𝑈 𝑧
𝑌 𝑧 = 𝐶𝑋 𝑧 + 𝐷𝑈(𝑧)

𝑌 𝑧 = 𝐶 𝑧𝐼 − 𝐴 −1𝑥0 + 𝐶 𝑧𝐼 − 𝐴 −1𝐵 + 𝐷 𝑈(𝑧)

Transfer function (discrete case)

again a rational function
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• For continuous systems

ሶ𝑥 = 𝜆𝑥 → 𝑥 𝑡 = 𝑒𝜆(𝑡−𝑡0)𝑥0

– stability ֞ 𝑅𝑒 𝜆 < 0

• For discrete systems
𝑥𝑘+1 = 𝜆𝑥𝑘 → 𝑥𝑘 = 𝜆𝑘𝑥0

– stability ֞ |𝜆| < 1

Hurwitz theorem (discrete case)
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• To approximate a continuous system with 
a discrete one, we could just apply the 
substitution 

𝑧 = 𝑒𝑠𝑇𝑠 ⇒ 𝑠 =
1

𝑡
ln 𝑧 

in the Laplace transform

• Unfortunately, this is not linear!

Continuous to discrete
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• Different approximations are possible

𝑠𝑋 𝑠 ՞ ? 𝑋(𝑧)

• Forward/Explicit Euler (FE)

𝑠𝑋 𝑠 →
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇𝑠
→  

𝑧 − 1

Ts
𝑋 𝑧

• Backward/implicit Euler (BE)

𝑠𝑋 𝑠 →
𝑥 𝑘 − 𝑥 𝑘 − 1

𝑇𝑠
 →

1 − 𝑧−1

𝑇𝑠
𝑋 𝑧

Continuous to discrete
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• Trapezoids (or Crank-Nicholson, or Tustin)

𝑦 𝑡 = න
0

𝑡𝑘

𝑥 𝜏 𝑑𝜏 = 𝑦 𝑘 − 1 + න
𝑡𝑘−1

𝑡𝑘

𝑥 𝜏 𝑑𝜏

 ≈ 𝑦 𝑘 − 1 +
𝑥 𝑘 + 𝑥 𝑘 − 1

2
𝑇𝑠

→ 𝑌 𝑧 = 𝑧−1𝑌 𝑧 + 𝑋 𝑧 1 + 𝑧−1
𝑇𝑠

2

𝑋 𝑠

𝑠
→

1 − 𝑧−1

1 + 𝑧−1

2

𝑇𝑠
𝑋(𝑧)

Continuous to discrete
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