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Overview

* Introduction to dynamical systems

LTI systems

Time domain response and Lagrange formula
» |Laplace transform and transfer function
 Equilibria and stability

« Example: state feedback

« Harmonic response function

« Discrete-time systems (hints)

E P F L Control and Operation of Tokamaks




Introduction

u y
> S R ——

« We want to assign a desired behaviour to the
system S

* the output y(t) should be close to some reference
signal r(t)

« To do so, we look for a suitable input u(t)
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Introduction

« Two possible strategies

1. Open-loop: find u that allows to reach the
desired y a priori (usually based on an inverse
model of the system)

(feedforward control)

=PrL
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Introduction
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« Two possible strategies

2. Closed-loop: calculate u online based on a
measurement of the output y
(feedback control)

=PrL
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Open-loop control

Example:

cT = —k(T —T,) + Py,

« T oven temperature [°C]

« T, external temperature [°C]
¢ thermal capacity [J/°C]
 k thermal conductivity [W/°C]
e P, input power [W]
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Open-loop control

Example: ¢cT = —k(T — T,) + Py,

» Desired steady-state temperature of 150°, assuming

T, = 20
k =10
¢ = 1000

- feedforward strategy:

P, = k(150°—T,) = 1300 W
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Open-loop control

>> T e = 20;
>> ¢ = 1000;
>> k = 10;

>> oded5(Q(t,T)-k/c*(T-T e)+P in/c, [0 2000],T e)
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Open loop control

« What could go wrong?

— uncertainty on model coefficients
— uncertainty on environment temperature

— not all power levels may be available
- relay/bang-bang control

— may be slow...
- improve dynamical performance

 Moreover, feedforward is not viable for
unstable systems!
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Why feedback control?

Why design a feedback controller?

1. Uncertainties:
the model may not be accurate

2. External disturbances:
unforeseen and uncontrollable inputs may
act on the system

3. Efficiency:

optimize the time/amount of energy needed
4. Flexibility:

we may not know the reference in advance
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Why feedback control?

« But above all:

—open-loop control changes the output of
the system

—closed-loop control changes system
dynamics:
—> we can stabilize an unstable system!
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Closed-loop control

« The reference is usually compared with the
measured output to generate a control error

signal
u(t) y(t)
> S T
c |2 Q r(t)

control error
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Closed-loop control

Classic closed-loop control scheme

u(t)

r(t) ﬁ)e(t) C

g

S y(t) R

* r(t): reference
 ¢(1): control error
* Uu(t): control action

* y(1): controlled output
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Dynamical systems

« Dynamical system : mathematical model that
represents how a given process (system) with a
certain number of degrees of freedom evolves over

time

 Behavior typically depends on previous history,
which is compactly captured by a set of state

variables | |
(e.g. position and speed of a material point)

 Typically, evolution is described by a set of
differential equations
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Dynamical systems

» General equations of a dynamical system

x(t) = f(x(O),u(t);t),  x(to) = %o

y(t) = g(x(t), u(t); t)
—~— —~— "~

outputs state  inputs (controllable or not)

* This representation is called
Input-State-Output (or ISO)

 |n general, a system can be non-linear, time-
varying, MIMO, complex, multi-agent...

=PrL
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LTI dynamical systems

 Special case: Linear Time-Invariant (SISO)
systems

x(t) = Ax(t) + Bu(t), x(ty) = xg
y(t) = Cx(t) + Du(t)

* linear systems -> superposition principle!
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Free evolution

» We take advantage of the superposition
principle to decompose the system as (#1)

X = Ax, x(ty) = X
u=20

NOTE: a system whose state does not depend on external inputs
s said to be autonomous (but the same terminology is also used
for nonlinear systems that do not depend explicitly on time)
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Free evolution

X = Ax

« This system evolves according to

Matrix exponential

— / d —
X(t) — eA(t to)xo EeAt—AeAt

- free evolution/natural response (u = 0, x(t,) # 0)

NOTE: the dependency ont — t, and not on t and ¢,
separately comes from the time-invariance hypothesis
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Forced response

» We take advantage of the superposition
principle to decompose the system as (#2)

x = Ax + Bu, x(tg) =0

t
x(t) =j eAt-DRy(t)d T
t

0

- forced response (u # 0, x(t;) = 0)
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Lagrange formula

« Adding up the two contributions

x = Ax + Bu, x(ty) = X
y=Cx+ Du

Convolution integral
‘ also written as
et x u(t)
t /
x(t) = eAlt=to)y, + f eAt-DByu(t)d 1
Lo

y(t) = Cx(t) + Du(t)

Lagrange's formula
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Lagrange formula

« Assume for simplicity D = 0* (strictly proper system)

*If not, the system could be separated into a dynamical and a purely
algebraic part (D)

x = Ax + Bu, x(ty) = xg

t
y(t) = CeAlt—to)x, + Cf eAt-DBu(t)d t

to

NOTE: from here on we will assume (wlog) t, = 0
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Natural modes

« We defined the matrix exponential function through
the property

d
_ At — A At
dte e

« But we can also express it through its Taylor series
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Natural modes

 Inthe case of a diagonal matrix

-/11 0 0 - Ak -87[1 0 0 -
A=]|0 =~ 0| =>el=1+ =0 = 0
0 0 An_ k . ] 0 0 eln_

« More in general, if the dynamical matrix is diagonalizable*:

A =T AT
x =TAT 1x
(T1x) = A(T1x)

* For simplicity we only consider the case of eigenvalues with multiplicity one
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https://www.youmath.it/lezioni/algebra-lineare/matrici-e-vettori/1581-matrice-diagonalizzabile.html

Natural modes

Defining

we get

§(t) = ePéy =

x(t) = TE() = TeMT 1x,
H_l

_ pAt

The evolution of the system is associated with exponential
modes related to the eigenvalues of the A matrix
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Natural modes

These modes can be;

 Aperiodic - real ei%etnvalues

 Pseudoperiodic - complex eigenvalues

Cle(l tela) t

NOTE: in the case of complex eigenvalues, a pseudoperiodic mode
\éwll correspond to a pair of conjugated eigenvalues. More details
here
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http://www.diag.uniroma1.it/~lanari/FdA9/FdA9MatDid/AutovaloriCC.pdf

Natural modes

Aperiodic modes 1 <0
— Convergent ¢
A =0
— Constant
t
— Divergent Ai >0
t
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Natural modes

Pseudo-periodic modes

— Convergent

— Constant

— Divergent

=PrL
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Hurwitz theorem

 Ais said to be a Hurwitz (or stable) matrix if
all of its eigenvalues have negative real part

« Dynamical systems with a Hurwitz A
matrix are stable

=PrL
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Laplace Transtorm

« We can apply the Laplace Transform to the
equations of our system

LIF(O)] = F(s) = f F(Destdt
0

- We consider the monolateral transform: we
want to preserve causality

« Mono and bi-lateral transforms coincide if

f®) =@ -1
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https://it.wikipedia.org/wiki/Trasformata_di_Laplace

Laplace Transtorm

Laplace transform has the following properties
* Linearity

« Translation in the Laplace domain

Lle®f ()] = F(s — a)

e Translation in time
LIf (£ =] = F(s)e ™
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Laplace Transtorm

Laplace transform has the following properties

 Derivative in time
L 4f

—| = sF(s) = f(0)

 Integral in time

L :fotf(r)dr:

—F(s)
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Laplace Transtorm

Laplace transform has the following
properties

e Convolution

LIf x gl = F(s)G(s)

- thanks to this property, we can turn the
convolution integral seen before into a
product of Laplace transforms (see later)
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Laplace Transtorm

The following theorems also apply

» Initial value
f(0) = lim sF(s)
S— 00

- Final value
l}im f(t) = lirr& SF(s)
—00 S—
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List of transforms

 Dirac’s delta fcn » Exponential

L[G(t)] — 1 L[eat: — - i -
« Step fcn .o
=15 o0 o
L|sin(wt)] = T2
« Ramp ,
LIR(D)] = 1/52 « Cosine
L|cos(wt)] = T2
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Transter function

« We can apply the Laplace Transform to the
equations of our system

sX(s) —xy = AX(s) + BU(s)
Y(s) =CX(s) + DU(s)

4

Y(s) =C(sl —A) 1xy + (C(sI — A)"1B + D)U(s)

~—
transfer function
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https://it.wikipedia.org/wiki/Trasformata_di_Laplace

Transter function

The expression

H(s) == rs) =C(sI —A)™'B

(s)

s also called transfer function of the system

- The tf is an Input-Output (10) representation
of the system
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Transter function

In particular, since LI6(t)] =1
u(t) =6(t) = Y(s) = H(s)U(s) = H(s)

- The transter function of a linear system is the
Laplace transform of the impulse response
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Transter function

Real differential equation = Complex algebraic equation

Time domain

x(t) —»| h(t) P—» y(t) = h(t)*x(1)

| | !

Inverse
4 aplace ,Z aplace
‘4’ aplace

} ' |

X(s) —»| H(s) F—» Y(s) = H(s) X(s)

Frequency domain
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Transter function

For LTI systems, the tf will be a ratio of
polynomials

num(s)  amS™ + ayp_1S™ 4+ ags + ag
den(s)  b,s™+b,_1s" 1+ .-+ b;s+ b,

H(s) =

« The roots of num(s) are called zeros
« Theroots of den(s) are called poles
* den(s) = det(sl — A) - characteristic polynomial of 4!

The poles coincide with the eigenvalues of the system
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Transter function

The tf can be broken down to terms of the form

-1
- — e ()

s—A
w L~ at .-
' Caira? —  e%sin(wt) - 1(t)
S L at
' Caira? —  e%cos(wt) - 1(t)

- Again the natural evolution modes seen before!
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Equilibria and stability

« Equilibrium points are defined by the equation

x=f(x,u)=0
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Equilibria and stability

« Without external forcing, a system that is at
an equilibrium point will stay there

« However, equilibria can be stable or unstable

E P F L Control and Operation of Tokamaks



Equilibria and stability

* For linear systems, the only equilibrium
point IS
Ax =0

 This equilibrium is stable if A is Hurwitz
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Equilibria and stability

The system is unstable if the matrix A

1. has eigenvalues in the right-half Gauss plane
2. has eigenvalues with O real-part and multiplicity > 1

(if eigenvalues with O real part are present with multiplicity one, the
system is said to be marginally stable)
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Example: state tfeedback

* A simple example of feedback control is as
follows (state feedback)

x = Ax(t) + Bu(t),

y = x(t)
u=—-Kx

=PrL

u

ﬁ

x(ty) = xg
=X
W)
K k
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Example: state feedback

« Substituting the expression of u(t):
x = (A — BK)x(t)

- With this choice, the original system is recast into an
autonomous system with dynamical matrix A — BK

« The system will evolve with the modes associated to
A — BK: if these can be chosen arbitrarily (i.e. the state
IS measurable and the system is controllable...), we are
free to assign a desired dynamic behaviour to the
system!
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Frequency response

» Frequency domain analysis is a tool widely used in
the analysis and control of dynamical systems

« The harmonic response function can be obtained
by applying the Fourier transform to the system

- For stable* LTI systems this is equivalent to
evaluate the tf along the imaginary axis s = iw

* Stable systems have convergence abscissa < 0
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Frequency response

« A LTI system under a sinusoidal input will
produce a sinusoidal output

« Module and phase of the output sinusoid are
related to the harmonic response function

sin(wt) W (iw)|sin(wt + £W (iw))
1 W (iw) >

~__ /A
e \V

=PrL
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Frequency response

* |t can be shown that feeding a sinusoid
u(t) = sin(wyt) to a LTI system, it reaches
sinusoidal regime, where:

* the output is shifted by 4P (wg)
* itis scaled by |P(wg)]

« NOTE: P(iw) = —P*(iw) = phase is odd, module is even

(...of course - can you see why?)
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Frequency response

« example:

=
|

o = . Sin(ZT[ . 3t)

: Bode Diagram
20 : T |

<
|

10 |

B)

O— |

Magnitude (d
o

System: sys
Frequency (rad/s): 18.8 =0.2649

L Magnitude (dB):-11.5 | — ]
0 : : ,

N
o
T

System: sys
Frequency (rad/s): 19.6
Phase (deg): -87.1

90 | 1 ‘
10° 10" 10 10’ 102
Frequency (rad/s)

Phase (deg)
A
&)
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Graphical representation

« Some graphical representations are widely
used in control engineering

» They focus on different aspects of the
harmonic response

=PrL
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Bode diagram

Bode Diagram

« Magnitude and

phase of G (iw)
separately 3
« wide frequency g
ranges |
- usually x axis 0
in logarithmic
scale §
« Example: .
P(iw) = T

S(S + 1) Frequency (rad/s)
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Bode diagram

« Bode diagrams (magnitude in particular)
are quite common also in other fields

WOOFER MID-RANGE TWEETER
8 Ohm 700Hz  “gopm  39KHZ  aonm

HF320

i
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Nyquist diagram

« Real and
Imaginary parts
of G(iw) on the
same graph

* Very useful to
study stability

« Example:

Gliw) = (s +1)3

=PrL

Imaginary Axis
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Discrete-time systems

 In many cases, it may be necessary to
discretize the dynamics of the system

» Typical example: digital control systems

x = Ax(t) + Bu(t) = x(k+1) = Ax(k) + Bu(k)
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* |n this case the Z-transform can be used

F(s) = j+ooe_5tf(t)dt
0

* represent sampled signal as

t = KTy = f(T) = ) f()S(t = kT)
0
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« apply Laplace transform

F(s) = f h e‘Stz F(DS(t — kT,) dt
0 0

=) Ty e
0

e soitis natural to define

z=eTs = F(z)= ) f(kT,)z™"
2.
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The Z-transform inherits many properties

* Linearity

 Translation in time

ZIfk = D] =F(2)z™"

— sometimes written as

flk—=1) =z f(k)

 Final value
tlimf(t) = lin%(z — 1F(2)
—00 zZ—

=PrL
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Transfer function (discrete case)

« Similar to the Laplace transform

zX(z) —xo = AX(z) + BU(2)
Y(z) =CX(z) + DU(2)

Y(z) =C(zl —A) 1xy + (C(zl — A)™1B + D)U(2)

- 7
~—

again a rational function
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Hurwitz theorem (discrete case)

« For continuous systems
x = Ax = x(t) = et-to)y,

— stability & Re(1) < 0

» For discrete systems
Xk = Axy = x = 2*xg

— stability & |4] < 1
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Continuous to discrete

» To approximate a continuous system with
a discrete one, we could just apply the
substitution

1
7z = eSls :»s=;lnz

in the Laplace transform
« Unfortunately, this is not linear!
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Continuous to discrete

 Different approximations are possible
sX(s)e?7X(2)

« Forward/Explicit Euler (FE)

x(k+1)—x(k)_) z—1

X
sX(s) - T T

X(2)

« Backward/implicit Euler (BE)

x(k) —x(k—1) . 1—2z71

X
sX(s) - T T

X(2)
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Continuous to discrete

» Trapezoids (or Crank-Nicholson, or Tustin)

txk Lk
y(t) = J x(D)dt=y(k—1) + j x(t)dt
0 tk—1

x(k) + 32c(k - 1) r

~y(k—1)+

>Y(2)=z"1Y(2) +X(2)(1+ z‘l)%

X(s) 1—z12
ﬁ
S 1+2z71T,
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